Search results for "water treatment"
showing 10 items of 311 documents
Use of biological and sedimentation models for designing Peñíscola WWTP.
2004
This paper presents Peñíscola wastewater treatment plant design. Peñíscola is a tourist city in Castellón (Spain), whose population changes significantly between summer and the rest of the year. The design of the biological and settling treatment units has been confirmed by computer model simulations and provided for biological organic matter, nitrogen and phosphorus removal. Two different treatment schemes have been proposed in order to optimize the plant performance during both seasonal operations. During low-load season, the plant will be operated under extended aeration conditions, so further sludge stabilization will not be needed. During high-load season, the plant will be operated un…
Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater
2017
Results obtained from three aerobic granular sludge reactors treating brewery wastewater are presented. Reactors were operated for 60 d days in each of the two periods under different cycle duration: (Period I) short 6 h cycle, and (Period II) long 12 h cycle. Organic loading rates (OLR) varying from 0.7 kg COD m-3 d-1 to 4.1 kg COD m-3 d-1 were tested. During Period I, granules successfully developed in all reactors, however, results revealed that the feast and famine periods were not balanced and the granular structure deteriorated and became irregular. During Period II at decreased 12 h cycle time, granules were observed to develop again with superior structural stability compared to the…
Analysis of Biomass Characteristics in MBR and MB-MBR Systems Fed with Synthetic Wastewater: Influence of a Gradual Salinity Increase
2014
The paper presents the results of a field gathering campaign carried out on two different pilot scale membrane bioreactor (MBR) systems, treating synthetic wastewater subject to a gradual increase of salinity. One was a conventional MBR system, while the other was a moving bed biofilm membrane bioreactor (MB-MBR), which combines suspended biomass and biofilm. Indeed, the presence of suspended carriers inside the bioreactor seems to give benefits due to the collisions between the circulating media and the membrane. The aim of the study was the comparison of two configurations in terms of biomass activity characterization and performance (pollutants removal and hydraulic behaviour). The resul…
Natural organic matter coagulation in Valencia water supply. Pilot plant studies
1998
: To reduce disinfection by-product (DBP) formation in drinking water treatment, the presence of natural organic matter in surface waters must be minimised. This paper describes pilot plant studies carried out on two surface waters to assess the effectiveness of coagulation in organic matter removal, the Turia and Jucar rivers, which supply the city of Valencia (1m inhabitants). The experiments were conducted with different coagulants (iron sulphate, polyaluminium chloride (PACl)) and treatment schemes. Process effectiveness was evaluated in terms of effluent turbidity, presence of residual metal in final water, and organic matter removal. Four parameters were used to quantify organic matte…
Blood Proteins and Their Interactions with Nanoparticles Investigated Using Molecular Dynamics Simulations
2018
Blood proteins play a fundamental role in determining the response of the organism to the injection of drugs or, more in general, of therapeutic preparations in the blood stream. Some of these proteins are responsible for mediating immune response and coagulation. Nanoparticles, which are being intensely investigated as possible drug nanocarriers, heavily interact with blood proteins and their ultimate fate is determined by these interactions. Here we report the results of molecular dynamics simulations of several blood proteins aimed to determining their possible behavior at the nanoparticle surface. On one hand we investigated the behavior of fibrinogen, a glycoprotein, which polymerizes …
Anodic abatement of organic pollutants in water in micro reactors
2010
The electrochemical oxidation of oxalic acid (OA) was performed in a micro flow cell equipped with a boron doped diamond (BDD) anode. This preliminary study demonstrates that a flow cell with a micrometric distance between the cathode and the anode can be used to perform the electrochemical treatment of waters contaminated by organic pollutants in the absence of added supporting electrolytes with high abatements. The effect of the distance between the cathode and the anode, the flow rate and the current density on the abatement of oxalic acid and on the current efficiency was in particular studied.
Start-Up of Chitosan-Assisted Anaerobic Sludge Bed Reactors Treating Light Oxygenated Solvents under Intermittent Operation
2021
Quality of the granular sludge developed during the start-up of anaerobic up-flow sludge bed reactors is of crucial importance to ensure the process feasibility of treating industrial wastewater such as those containing solvents. In this study, the microbial granule formation from suspended-growth biomass was investigated in two chitosan-assisted reactors. These reactors operated mimicking industrial sites working with night closures treating a mixture of ethanol, ethyl acetate, and 1-ethoxy-2-propanol. Each reactor operated under different hydrodynamic regimes typical from UASB (R1: <
Correlation of wood-based components and dewatering properties of waste activated sludge from pulp and paper industry.
2010
Large amounts of wet sludge are produced annually in municipal and industrial wastewater treatment. Already in pulp and paper industry, more than ten million tons of primary sludge, waste activated sludge, and de-inking sludge is generated. Waste activated sludge contains large quantities of bound water, which is difficult to dewater. Low water content would be a matter of high calorific value in incineration but it also has effects on the volume and the quality of the matter to be handled in sludge disposal. In this research waste activated sludges from different pulp and paper mills were chemically characterised and dewatered. Correlations of chemical composition and dewatering properties…
Iron-based metal-organic framework: Synthesis, structure and current technologies for water reclamation with deep insight into framework integrity.
2021
Water is a supreme requirement for the existence of life, the contamination from the point and non-point sources are creating a great threat to the water ecosystem. Advance tools and techniques are required to restore the water quality and metal-organic framework (MOFs) with a tunable porous structure, striking physical and chemical properties are an excellent candidate for it. Fe-based MOFs, which developed rapidly in recent years, are foreseen as most promising to overcome the disadvantages of traditional water depolluting practices. Fe-MOFs with low toxicity and preferable stability possess excellent performance potential for almost all water remedying techniques in contrast to other MOF…
Greenhouse Gas Emissions from Wastewater Treatment Plants on a Plantwide Scale: Sensitivity and Uncertainty Analysis
2016
This paper presents the sensitivity and uncertainty analysis of a mathematical model for greenhouse gas emission (GHG) and energy consumption assessment in wastewater treatment plants. A sensitivity analysis was carried out (using two different methods) to determine which model factors have the greatest effect on the predicted values of the GHG production. Further, an uncertainty analysis was carried out to quantify the uncertainty of the key model outputs, such as carbon dioxide production from activated sludge treatment. The results show that influent fractionation factors, which characterize influent composition, have an important role on direct and indirect GHGs production and emission.…